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Abstract
The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large

burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires.

Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these

characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire

behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was

to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal

area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in

limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an

information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most

predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from

57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained

between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total

aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy

base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar

metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should

broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire

prone forests.
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1. Introduction

Most forests are subject to fire (Attiwill, 1994). The

importance of fire, and its potential for releasing

carbon stored in forest biomass, has become increas-

ingly clear (Houghton et al., 2000). To quantify the

role forests play in the global carbon cycle it is

necessary to comprehend how fire affects carbon

fluxes (e.g. net primary productivity and decomposi-

tion), and how these processes interact and feed back

on each other. Studies of the effects of fire on the

carbon cycle and on forest succession have been

carried out in tropical (Hughes et al., 2000; Page et al.,

2002), temperate (Keane et al., 1990) and boreal

forests (Paré and Bergeron, 1995; Wirth et al., 1999),

as well as in nonforested vegetation types (Tilman

et al., 2000). Climate change is likely to interact with

other factors and determine changes in fire regimes

and post-fire productivity of many forests in the world

(Overpeck et al., 1990; Flannigan and Van Wagner,

1991).

The ponderosa pine dominated forests at low

elevations in the Rocky Mountains are historically fire

prone (Covington and Moore, 1994). Over the last

century, there have been significant changes in the

structure of these forests (Weaver, 1959; Cooper,

1960; Kaufmann et al., 2000). Selective logging of

large trees, grazing by domestic livestock, tree

planting and fire suppression have all been identified

as potential contributing factors that have led to an

increase in stand densities and an accumulation of

biomass and dead fuels in these forests (Covington and

Moore, 1994). These changes have contributed to the

recent occurrence of relatively large, severe wildfires

in ponderosa pine forests. There are projects being

developed and implemented to restore these forests to

their historical condition, and reintroduce fire as a

natural process (Moore et al., 1999; Fulé et al., 2001;

Brown et al., 2001).

Quantification of the effect of fire on carbon stocks

and fluxes requires estimates of the amount of biomass

in ecosystem components, including actively photo-

synthesizing tissues. The development and use of

spatially explicit maps of forest fuels can enhance our

understanding and modeling of fire behavior (Perry,

1998). Given that fire is an inherently spatial process,

restoration and fuel reduction efforts will be much

more effective if the areas to be treated are selected
based on data that include the landscape context of the

area of interest. Therefore, there is a critical need to

estimate structural variables of ponderosa pine forests.

Total aboveground biomass, basal area and tree

density provide information on carbon stocks. Foliage

biomass, as an estimate of active tissues, is useful in

estimating primary productivity. Stand height, canopy

bulk density and canopy base height are common

inputs for fire behavior models (Scott and Reinhardt,

2001). Stand height controls wind profiles within the

forest; canopy base height is critical in determining

whether the fire can reach the crowns of trees, and

canopy bulk density quantifies the fuel in the canopy

layer, which will feed active crown fires (Scott and

Reinhardt, 2001).

Extensive, spatially explicit inventories of stand

structure are extremely labor intensive and expensive.

It is practically impossible to obtain full inventory

coverage of large areas on the ground, especially

where land ownership is mixed. One of the main

advantages of remote sensing is the capacity to obtain

spatially explicit data over large areas in a timely and

economic fashion. These technologies have been used

extensively in different forest types as a means to

obtain spatially continuous estimates of stand

structural variables (Franklin, 2001). Passive optical

sensors (such as Landsat TM), as well as the

techniques developed to estimate vegetation char-

acteristics from the data they provide, have been

around for many years (Wulder, 1998). Since these

data are both inexpensive and reasonably available,

most of the digital remote sensing research on

estimating forest biophysical parameters has used

these types of sensors. The capacity of these sensors is

limited, however, because they provide two-dimen-

sional information from which the three-dimensional

structure of forests needs to be estimated. One

consequence is that relationships developed to

estimate total aboveground biomass or leaf area

index are nonlinear, saturating at approximately

100 Mg/ha (Cohen and Spies, 1992) and 4 m2/m2

(Baret and Guyot, 1991; Spanner et al., 1994),

respectively. A second consequence is that optical

sensors cannot provide information on the vertical

structure of biomass. This can be critical in

determining fire behavior (van Wagner, 1977,

1993) and wildlife habitat potential (e.g. DeGraaf

et al., 1998; Hershey et al., 1998).
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Recent technological developments have led to a

growing availability of active sensors, such as lidar

(light detection and ranging) and radar. These sensors

are designed to provide three-dimensional data, which

makes them prime candidates for overcoming the

saturation limitation of passive sensors (Dobson,

2000; Lefsky et al., 2001). Single wavelength radar

has been used to estimate forest biomass, but has been

shown to have similar limitations to those of passive

sensors, saturating at approximately 150 Mg/ha

(Waring et al., 1995).

Most topographic lidar sensors emit beams of

infrared light, and measure the time it takes for the

beamed energy to be reflected back to the sensor

(Baltsavias, 1999a). The position and height of the

reflecting surface is calculated based on the speed of

light. There are two broad categories of lidar, large-

footprint, continuous-return lidar, and small-footprint,

discrete-return lidar (Lefsky et al., 2002b). The first

class is characterized by the emission of a wide beam

of light (tens of meters in diameter); the returning

energy is stored as a height profile of intensity within

that beam. These sensors include SLICER, LVIS, the

proposed Vegetation Canopy Lidar and ICEsat

(Lefsky et al., 2002b). Discrete-return lidar emits a

small beam of light (centimeters in diameter), and

records the positions from which the returned energy

is greater than a certain threshold. Different systems

can record from 1 to 5 discrete returns from each laser

pulse. These systems are the ones commercially

available (Baltsavias, 1999b), and are being used

routinely to develop digital elevation models (Flood

and Gutelius, 1997).

Both types of lidar have been used successfully to

estimate stand structural variables, such as mean

height, total aboveground biomass, basal area, stem

volume and stand density, in a variety of forest types

(Means et al., 1999, 2000; Lefsky et al., 1999a,b,

2002a; Dubayah and Drake, 2000; Drake et al., 2002,

2003; Naesset and Bjerknes, 2001; Naesset and

Økland, 2002; Naesset, 2002). The focus of most of

the research has been on overcoming the saturation at

high biomass levels that limits the use of passive

sensors, and no evidence of similar saturation has been

found with lidar (Lefsky et al., 2002b). Little work has

been done in forests of relatively low density, such as

the ponderosa pine forests of the Front Range of

Colorado, USA. Stoker (2002) developed models to
accurately estimate individual tree height and dia-

meter at breast height in these forests, using discrete,

multiple-return lidar. This work needs to be extended

to provide area-based estimates of total biomass, as

well as other stand structural variables of interest for

fire behavior modeling and carbon stock estimation.

Our objective in this study was to estimate area-based

structural variables using discrete, multiple-return

lidar, and obtain a set of simple models to accurately

estimate stand height, canopy base height, tree density,

basal area, crown bulk density, total aboveground and

foliage biomass in low density forests. Implicit in this

objective is the selection of a subset of lidar-based

metrics that were useful predictors of the structural

variables of interest.
2. Methods

2.1. Study area

Our study area is in the Front Range of the Rocky

Mountains, Colorado, USA. It is located east of the

Cheesman Reservoir (398110N and 1058160W), and

comprises low elevation (2150–2400 m above sea

level) montane forests, dominated by ponderosa pine

(Pinus ponderosa Dougl. ex Laws), with a secondary

component of Douglas-fir (Pseudotsuga menziesii

(Mirb.) Franco). Mean annual rainfall is 413 mm,

and mean monthly temperatures range from �2.9

to 18.5 8C (Western Regional Climate Center

data, 1948–2004; http://www.wrcc.dri.edu/cgi-bin/

cliMAIN.pl%3Fcochee).

2.2. Field data

We measured stand structure variables for 14 sites

(mean area of 0.32 ha; Table 1) within the area of the

overflight (see Lidar data, below) in the summer of

2001, distributed over a wide range of topographical

positions (aspect and slope) and of structural condi-

tions (Table 1). At each site we obtained measure-

ments at 4–6 sampling points, randomly selected

along a transect through the site, following the point-

centered quarter method (Cottam and Curtis, 1956).

Following this method, we estimated tree density from

the point-to-tree distances (Cottam and Curtis, 1956).

We recorded tree species, diameter at breast height,

http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?cochee
http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?cochee
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Table 1

Range of topographical, stand and biomass structure conditions

covered by the field data

Variables Average Minimum Maximum

Slope (%)a 32 17 57

Aspect (8 from N)a 157 37 311

Elevation (m, a.s.l.)a 2236 2157 2417

Area of site (ha) 0.32 0.16 0.75

Mean height (m) 12.6 8.1 17.2

Lorey’s height (m) 15.7 12.7 21.2

Tree density (trees/ha) 329.7 90.0 1932.1

Basal area (m2/ha) 19.4 9.8 73.1

Foliage biomass (Mg/ha) 7.4 3.3 31.1

Tree aboveground

biomass (Mg/ha)

105.4 51.1 396.4

Canopy bulk density

(kg/m3)a

0.102 0.028 0.306

Canopy base height (m)a 3.3 0.45 11.25

a Only measured in the dataset collected in the summer of 2001

(14 sites). The rest of the variables were estimated for all 41 sites.
tree height, height to live crown and crown width for

four trees (heights >3 m) selected at each point.

Heights were measured with a Suunto1 clinometer,

while crown width and distances to trees (for density

estimates and clinometer readings) were obtained with

measuring tapes. We used allometric equations to

estimate foliage and total tree aboveground biomass
Table 2

Allometric equations used to calculate foliage and total aboveground bio

Biomass component Allometric equationsb

Pinus ponderosa

Bole biomass (without bark) BB = BV � dw

BV = 3.25 � 10�5 DBH

dw = 537.58 kg/m3

Bark biomass on bole ln BkB = �4.2063 + 2.2

Foliage biomass FBc = (0.1167 DBH1.577

Branch biomass BrBc = (0.0469 DBH2.13

Total aboveground biomass TAB = BB + BkB + FB

Pseudotsuga menziesii

Bole biomass (without bark) ln BB = �3.0396 + 2.59

Bark biomass on bole ln BkB = �4.3103 + 2.4

Foliage biomass FBc = (0.3021 DBH1.307

Branch biomass BrBc = (0.2624 DBH1.54

Total aboveground biomass TAB = BB + BkB + FB

a Mean tree values were multiplied by estimated tree density to provi
b BB: bole biomass (kg); BkB: bark biomass (kg); FB: foliage biomas

(kg); DBH: diameter at breast height (cm); H: height (m); BV: bole volu
c The constant by which the equation is multiplied is a bias correction

transformed variables.
for each sampled tree (Table 2). From these individual

tree values we obtained mean tree biomass, which we

then multiplied by the estimated densities to obtain

stand level (per hectare) values. From the measured

values we calculated mean stand height (m), Lorey’s

height (basal-area-weighed average height, m; Husch

et al., 2003), canopy bulk density (maximum 5-m

running mean density of foliage, calculated for 0.3 m

high intervals, kg/m3; Scott and Reinhardt, 2001)

canopy base height (minimum height with canopy

bulk density greater than 0.037 kg/m3, m; Sando and

Wick, 1972), basal area (m2/ha), total aboveground

and foliage biomass (Mg/ha). At each site we also

measured slope (with the Suunto1 clinometer), aspect

(compass bearing normal to the plane of the slope),

latitude, longitude and elevation (with a Garmin GPS

III+ handheld Global Positioning System, Garmin

International Inc., Olathe, KS, USA). Latitude and

longitude were used to match sites to the lidar data (see

Lidar data, below).

We also used data collected in 1997 by Kaufmann

and co-workers (unpublished), from a 15 ha stem-

mapped plot within the study area. This dataset

contains information on species, diameter at breast

height and total height for each tree. The same

allometric equations and calculations were applied to
mass for individual treesa

References

2 H Edminster et al. (1980)

this study

312 ln DBH Gholz et al. (1979)
4) � 1.112 Ter-Mikaelian and Korzukhin (1997)
15) � 1.172 Ter-Mikaelian and Korzukhin (1997)

+ BrB

51 ln DBH Gholz et al. (1979)

3 ln DBH Gholz et al. (1979)
6) � 1.158 Ter-Mikaelian and Korzukhin (1997)
64) � 1.244 Ter-Mikaelian and Korzukhin (1997)

+ BrB

de stand level values.

s (kg); BrB: branch biomass (kg); TAB: total aboveground biomass

me (m3); dw: wood density; ln: natural log.

factor published with these equations, as the models were fit as log
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these data to obtain all structure variables except tree

density, as in this dataset we had complete tree counts.

From these data we obtained 27 stand level values for

tree density, mean stand height, Lorey’s height, basal

area, and total and foliage biomass (each from 0.5 ha).

Since this dataset did not contain values on height to

live crown, we were unable to estimate canopy bulk

density or canopy base height. We did not attempt to

correct tree heights and diameters for growth occurred

since measurements were taken, given the low growth

rates of these forests. We assumed that the values of

measurements in 2001 would not be greater than the

1997 values plus measurement errors.

2.3. Lidar data

The lidar sensor DATISII (3Di/EagleScan Inc.) was

deployed over our sites on the 29th September 2001. It

was configured to emit laser pulses (wavelength

1064 nm) with a frequency of 36.5 kHz. For each

pulse, the system records information of up to five

discrete positions where energy is returned to the

sensor: easting and northing (datum WGS84; we used

these to match these data with our field sites), height

above sea level, return intensity and number of returns

recorded for that pulse. The system is a scanning lidar,

collecting data in only one direction across track. This

configuration provided an average of 1.23 returns/m2

(0.84–1.49 returns/m2) for our sites. The swath width

was approximately 1000 m (maximum angle was 158
from nadir). The horizontal position of each return has

a root mean square error (RMSE) of 0.5 m (equal to

the footprint diameter); the vertical RMSE is 0.15 m.

2.4. Processing of lidar data

Each return was automatically preclassified by 3Di/

EagleScan as ‘‘ground’’ or ‘‘vegetation’’, and subclasses

within each (proprietary algorithm). We generated

contour lines with an interval of 0.01 m, based on a

subset of the ‘‘ground’’ returns. We calculated the height

above the ground for each return by subtracting the

height of the nearest contour from the height above sea

level. The small contour interval was selected to obtain

ground height values directly below each return. Pairs of

ground points that were within 40 cm horizontal

distance of each other, and one of which was greater

than 5 cm below the corresponding contour were
considered representative of the same position, and

their heights were averaged. If any of those points had

originally been flagged as vegetation they were included

in the ‘‘ground’’ set. The contours were then recalcu-

lated. This procedure was iterated until no ‘‘ground’’

return was more than 5 cm above or below its closest

contour line. We used this stringent threshold to

guarantee that interpolation errors did not surpass the

vertical RMSE of the instrument.

For each site we calculated 39 metrics to synthesize

the information contained in the cloud of discrete lidar

points (Table 3; Appendix A). These metrics were

developed based on the lidar literature (Lefsky et al.,

1999a,b; Means et al., 1999, 2000; Naesset and

Bjerknes, 2001; Naesset, 2002; Naesset and Økland,

2002; Drake et al., 2002) and modifications thereof.

We decided to use as complete a set of metrics as

possible, in an effort to set the stage for the

convergence of studies using continuous- and dis-

crete-return lidar. The development of lidar metrics for

the different types of systems seems to have been

relatively independent. Working under the assumption

that the technology is likely to develop towards a

small-footprint lidar with continuous profiling capa-

city, we attempted to provide a complete set of metrics

that can be applied to all lidar systems, from which we

intended to select those metrics most useful for

predicting stand structure variables. We then grouped

the 39 metrics based on their assumed relationship to

different forest biophysical parameters (Table 3). The

above processing was done in ArcView 3.2 (ESRI,

Redlands, CA, USA).

2.5. Data analysis

We used an information–theoretic approach (Burn-

ham and Anderson, 2002) to rank the regression

models and select the best model to estimate each

stand structural variable from lidar metrics. This

methodology uses Akaike’s Information Criterion

(AIC) to rank a set of models developed a priori, based

on the support provided by the field data. AIC is an

estimate of the information lost when a model is used

as an approximation to the truth, so the smaller the

AIC value, the closer a particular model is to the

(unknown) truth. The distance between models (in

AIC units) provides information on whether the

models ranked below the best one are close
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Table 3

Composite metricsa derived from discrete cloud of lidar points to represent forest biophysical parameters

Biophysical parameter

represented

LiDAR-based metrics

Height

Mean tree height h25: mean height of all 1st ‘‘vegetation’’ returns from multiple-return pulses, with height >3 mb

h35: mean height of all 1st ‘‘vegetation’’ returns from pulses with 3 or more returns, with height >3 mb

Mean canopy height h1: mean height of all 1st returns classified as vegetation

h3: mean height of all 1st returns with height >3 mb

h12: mean height of all 1st ‘‘vegetation’’ returns from 2-return pulses

h13: mean height of all 1st ‘‘vegetation’’ returns from 3-return pulses

h1m: mean height of all 1st ‘‘vegetation’’ returns from multiple-return pulses

QMCH: quadratic mean canopy height: mean standardized intensitiesc

per height bin (0.5 m), weighed by the square of the height of the bind

CH: mean height of the highest ‘‘vegetation’’ return in each m2

Maximum tree height hmax: height of the highest return in the site

Cumulative canopy height hmaxi: mean height of the highest i% of 1st ‘‘vegetation’’ returns (i = 5, 10, 25, 50, 75, 90, 95)

Median canopy height medCH: height of the midpoint of the 0.5 m tall height bin with 50% of cumulative standardized

intensity of returns (defined in Appendix A) above it and 50% below it

Crown height HC: height of the midpoint of the 0.5 m tall bin with the minimum number of ‘‘vegetation’’ returns

Variability in canopy height SDh3

e: standard deviation in height of returns used to calculate h3

CVh3
: SDh3

=h3

rangeh3

e: range of heights of returns used to calculate h3

rel-rangeh3
: rel-rangeh=h3

Biomass density CRS: canopy reflection sum: sum of intensity of all returns reflected by the canopyd

CRS3: canopy reflection sum, considering only returns higher that 3 mb

rel-CRS1: canopy reflection sum relative to total reflection intensity (i.e. reflected by both the canopy

and the ground)d

rel-CRS2: rel-CRS1, corrected for ground surface reflectance (sensu Lefsky et al., 1999b)d

wCRS: weighted canopy reflection sum: similar to CRS, but the intensity of each return is weighed by

the inverse of its height above the groundd

RperP: number of ‘‘vegetation’’ returns, relative to the number of pulses

dveg: number of ‘‘vegetation’’ returns per unit area

d12, d13, d1m: number of 1st ‘‘vegetation’’ returns from pulses with 2, 3, or multiple returns,

respectively, per unit area

d3: number of returns with height >3 mb per unit area (initially considered metric for tree density)

Canopy cover CR1: proportion of total energy returned reflected by the canopyd

CR2: CR1, corrected for ground surface reflectance (assumed to be half the reflectance of the

canopy; sensu Lefsky et al., 1999b)d

d11: density of returns from 1-return pulses

PG/1: proportion of ground returns that are also 1st returns

P1/G: proportion of 1st returns that are also ground returns

a These metrics were used in models to predict stand structural variables.
b Height threshold follows sampling decisions in the field: only trees greater than 3 m in height were sampled.
c Standardized intensities: intensity of a single return, expressed as the proportion of the total intensity returned for that particular

pulse.
d Rationale and calculations developed in Appendix A.
e Absolute measures of variability.
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competitors or not. A rough guide is that models

within 1–2 AIC units of the best model have

substantial support; models 3–7 units from the best

model have less support, and models more than 10

units away from the best model have essentially no

support (Burnham and Anderson, 2002). In this way,

this methodology provides more useful information

than other commonly used techniques, such as

stepwise regression. We focused our interpretation

of results on models within three AIC units of the best

model, as having equivalent support in the data.

This is an exploratory analysis, and the incorpora-

tion of a large number of predictor variables (39 lidar

metrics) might lead us to find spurious relationships.

Our use of the information–theoretic approach is

geared precisely at trying to avoid these spurious

relationships. Even for the structural variable for

which we developed the largest number of models, this

number is lower than the combinations of variables

that would be considered if we ran stepwise regression

procedures using only six independent variables. The

critical advantage of our chosen methodology is that

we had control, a priori, of the combination of metrics

we used within a single model, as well as the number

of predictor variables within each model. Though this

is not a guarantee against these models portraying

spurious relationships, they are at least based on a

mechanistic hypothesis of why they should be good

predictors of each stand structural variable. Therefore,

the only uncertainty left is whether the resulting

correlations are due to the hypothesized causations.

This methodology also provides information on

model selection uncertainty, using the Akaike weights

(wr). These quantify the uncertainty related to whether

the selected best model is the actual best model. They

can be interpreted as the probability that the best model

would again be selected as the best model, given the

same set of candidate models and another sample of

similar data (Burnham and Anderson, 2002).

For each stand structural variable, we fitted a variety

of statistical models to the field data, using lidar metrics

as independent variables and each stand structural

variable of interest as the dependent variable. These

models included linear models with up to three

independent variables, and power functions of single

metrics. The variables and combinations used for each

stand structural variable are described in Appendix B.

We log-transformed the stand structure variables to
obtain homogeneity of variance and normality of

residuals where necessary. Where variables were log-

transformed, the fitted model was modified accordingly,

to obtain the proposed relationship between dependent

and independent variables (e.g. if the proposed model

was y = b0 + b1x, then the model we fit was

z = log(b0 + b1x), where z = log(y) and log is the natural

log. In Section 3, the model would be expressed as

y = b0 + b1x. We estimated the bias introduced by the

transformation (Sprugel, 1983), and used these esti-

mates to correct the predictions.

AIC is calculated based on estimates for model

parameters obtained by fitting the data using max-

imum likelihood techniques. Given the structure of the

field data (all variables were either normally or log-

normally distributed), we used least squares techni-

ques to fit the models, and estimated the likelihood of

each model given the field data as:

logð‘ðûÞÞ ¼ � n

2
logðŝ2Þ

where ‘ðûÞ is the likelihood of the model given the data,

n the sample size and ŝ2 is the residual sum of squares

divided by the sample size. Note that the maximum

likelihood estimates of the parameters do not change

under log transformations, as the density functions differ

only by a multiplicative constant that does not depend on

the parameter (Lindgren, 1993; Section 12.1). This

constant additively modifies the absolute value of the

logð‘ðûÞÞ. We fitted the regression models using the

procedure for nonlinear estimation in SAS (NLIN; SAS

Institute Inc., Cary, NC, USA). We calculated the AIC

for each model, and corrected these values for bias due

to small sample sizes (AICc):

AICc ¼ �2 logð‘ðûÞÞ þ 2K þ 2KðK þ 1Þ
ðn � K � 1Þ

where K is the number of estimated parameters

(including an estimate of variance). We ranked the

models based on AICc, and calculated the Akaike

weights for each model as:

wr ¼
e�0:5ðAICr�AICminÞ

XR

i¼1

e�0:5ðAICi�AICminÞ

where AICr is the model’s AICc, AICmin the minimum

AICc of all the models in the candidate set, and R is the

number of candidate models. The additive constant in
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the logð‘ðûÞÞ for the log-transformed variables affects

the absolute value of AICc, but not the ranking of the

models.
3. Results

3.1. Stand height

The best regression model for mean stand height

explained slightly under 60% of the variability of the 41

sites (Table 4; Fig. 1a), based on two independent

variables: the mean height of the upper 50% of 1st

‘‘vegetation’’ returns (hmax50) and the standard deviation

of all 1st returns with height >3 m (SDh3
). This model

had only a 9% chance of being the best model, and

eleven other models had equivalent support (Table 4).

The first four competing models had the same structure

as the best model, with a different cumulative height or

variability metric (Table 4). The rest of the top models

with significant coefficients (i.e. the 95% confidence

limits did not straddle zero) were functions of a single

cumulative height metric.

Expressing stand height as the basal-area-weighed

average tree height (Lorey’s height) increased the fit of

the best model (r2 = 86.8%), and slightly improved the
Fig. 1. Observed values of stand height vs. values predicted by the best r

weighed average height (Lorey’s height) of sampled trees. Full and emp

respectively). The solid gray line represents the 1:1 line, where observed =

intervals for the plotted model. Models are presented in Table 4.
probability that the model was the best one from the

candidate set (wr = 0.16) (Table 4; Fig. 1b). The best

model for Lorey’s height was a linear function of the

mean height of the highest 25% of the 1st ‘‘vegeta-

tion’’ returns (hmax25; Table 4). Another eight models

had similar support in the data (Table 4). They all had

hmax25 as a predictor. The last six of these had an added

predictor, representative of variability in canopy

height (Table 4). They are equivalent to the best

model, though, since the confidence limits of their

added coefficients straddled zero.

3.2. Biomass structure variables for estimates of

carbon stocks

We analyzed four descriptors of stand biomass

structure commonly used to quantify carbon stocks

and fluxes: total aboveground biomass, basal area, tree

density and foliage biomass. All were log-transformed

previous to the analysis. The best model for each

biomass structure variable explained between 67.2%

and 79.4% of the variability of the 41 sites (Table 4;

Fig. 2). The best model for these four structural

variables was a negative exponential function of the

proportion of ground returns that were not intercepted

by the canopy (PG/1). The model selection uncertainty
egression model. (a) Mean height of sampled trees. (b) Basal-area-

ty squares represent the two sets of data used (14 and 27 points,

predicted. The dotted black lines are the limits of the 95% prediction
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Table 4

Top models describing each stand structure variable

Stand structure

(dependent)

variable

Best regression modela Coefficients (standard error) wr
b r2 c S.E.d Number of

competing

modelse

Predictor variables in

competing modelsf

b0 b1 b2 c

Mean stand

height (m)

b0 + b1hmax50 + b2SDh3
(5) 4.52 (1.40) 0.82 (0.12) �0.78 (0.36) 0.09 57.1 1.18 11 hmax75 (2), 95,90,25,10,

CVh3
, rangeh3

(1)

Lorey’s height (m) b0 + b1hmax25 (9) 1.90 (0.87) 0.86 (0.05) 0.16 86.8 0.69 8 SDh3
, rangeh3

(2),

CVh3
, rel-rangeh3

(1)

Total aboveground

biomass (Mg/ha)

b1PG=1
c (2) 35.79 (3.61) �2.67 (0.25) 0.56 74.2 0.20 1 –

Foliage biomass

(Mg/ha)

b1PG=1
c 2.06 (0.20) �3.06 (0.25) >0.99 79.4 0.20 0 –

Basal area (m2/ha) b1PG=1
c 6.17 (0.57) �2.76 (0.23) >0.99 78.5 0.19 0 –

Tree density (trees/ha) b1PG=1
c 56.39 (9.94) �3.94 (0.44) >0.99 67.2 0.36 0 –

Canopy base

height (m)

b0 + b1h1m + b2SDh3
(1) 0.27 (1.83) �0.57 (0.08) 2.20 (0.51) 0.39 79.8 0.36 1 h13, rangeh3

(1)

Canopy bulk

density (kg/m3)

b1PG=1
c 0.018 (0.004) �3.45 (0.45) 0.56 82.8 0.32 0 –

a Independent variables follow names in Table 3. In parentheses is the number of competing models these variables formed part of.
b Akaike weights (probability that the model would be selected as the best model from the same candidate set, given another dataset).
c Coefficient of determination of the regression. Values are in natural log space for all variables except mean stand height and Lorey’s height.
d Standard error of estimates. Values are in natural log space for all variables except mean stand height and Lorey’s height (m).
e Competing models are defined as those within 3 AICc units of the best model (number does not include the best model).
f Variables are ordered by the number of competing models they form part of, which is shown in parentheses.
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Fig. 2. Observed values of biomass structure variables vs. values predicted by the best regression model. The biomass structure variables analyzed

were: (a) total tree aboveground biomass (Mg/ha); (b) foliage biomass (Mg/ha); (c) basal area (m2/ha); (d) tree density (trees/ha). Full and empty

squares represent the two sets of data used (14 and 27 points, respectively). The solid gray line represents the 1:1 line, where observed = predicted.

The dotted black lines are the limits of the 95% prediction intervals for the plotted model. Model coefficients are presented in Table 4.
for tree density, basal area and foliage biomass was

negligible (wr > 0.99). The uncertainty was greater

for total aboveground biomass (wr = 0.56). The

regressions of predicted versus observed values of

all four variables did not follow the 1:1 line

consistently (Fig. 2). There were four sites with

substantially greater biomass and density than

the other 37 (Fig. 2). These were four out of five

leverage points identified using objective diagnostics

(ROBUSTREG procedure, SAS, SAS Institute Inc.,
Cary, NC, USA). To analyze the effect of these values

on the regression coefficients and, particularly, on the

selection of models, we refit and reranked the models

without these five leverage points (i.e. based on what

we will call the restricted dataset). For all four biomass

structure variables, the new regression coefficients of

the original best model were outside the approxi-

mately 95% confidence limits of the original values.

The coefficient of determination of the best models

decreased in all cases (Table 5).



S.A. Hall et al. / Forest Ecology and Management 208 (2005) 189–209 199

Table 5

Goodness of fit of original best models when fitted to the restricted

datasetsa

Dependent variable N r2 b S.E.c

Total aboveground biomass

(Mg/ha)

36 37.9 0.18

Foliage biomass (Mg/ha) 36 53.8 0.14

Basal area (m2/ha) 36 48.1 0.14

Tree density (trees/ha) 36 33.8 0.26

a We restricted the data by eliminating five leverage points (the

same five for all response variables) to determine their effect on

model parameters and ranking.
b Coefficient of determination of the regression (in natural log

space).
c Standard error of estimates (in natural log space).

Fig. 3. Observed values of canopy base height (CBH) vs. values

predicted by the best regression model, in natural log space. The

arrows identify the two points we suspected might have undue

influence on the regression fit and model ranking. The solid gray line

represents the 1:1 line, where log (observed) = log (predicted). The

dotted black lines are the limits of the 95% prediction intervals for

the original best model (N = 13). The model is presented in Table 4.
The models selected for total aboveground biomass

and basal area with the restricted dataset were almost

all linear. The top seven models for total aboveground

biomass were functions of a height metric and a metric

related to canopy cover, and all explained approxi-

mately 60% of the variability. The top 15 models for

basal area had r2 ranging from 48.1% to 57.8%. The

equivalent to the original best model for basal area was

ranked tenth. A linear function of the same

independent variable was ranked 7th. The rest of

the top models linearly combined a height metric with

a canopy cover or biomass density metric (some with

interaction terms), similar to the models for total

aboveground biomass (Table 6).

The best model for tree density was again a

nonlinear function of a canopy cover related metric.

The linear function of the same variable was a close

competing model, though the fit of both models was

low (Table 6). A linear function of a height metric, a

cover metric and a crown height metric was the best

model for foliage biomass. The linear version of the

original best model for foliage biomass was within one

AICc unit of the best model.

3.3. Fire behavior modeling variables

The values for the two main fire behavior model

inputs, canopy base height and canopy bulk density,

were log-transformed. One of the 14 sites for which

we had measurements of height to live crown

(required to estimate both canopy base height and

canopy bulk density) did not have densities greater

than 0.037 kg/m3 at any height (threshold value used
to define canopy base height; Sando and Wick, 1972),

so we were unable to calculate its canopy base height.

Therefore, the regressions for this variable were fitted

to 13 points.

The best model describing canopy base height was

linear, with two independent variables: the mean

height of 1st ‘‘vegetation’’ returns from multiple-

return pulses (h1m) and the standard deviation of

the heights of all 1st returns more than 3 m from

the ground (SDh3
; Table 4). This model had a 39%

chance of being selected as the best model using

another dataset. Only one other model had equivalent

support in the data (Table 4): a function of the mean

height of 1st ‘‘vegetation’’ returns from 3-return

pulses (h13) and the range in height of all 1st returns

more than 3 m from the ground (rangeh3
), with an

interaction term.

The coefficient of determination of the best model

for canopy base height seemed to be dominated by two

sites, with canopy base height (CBH) values of

11.25 m and 0.45 m (Fig. 3). We were unable to

objectively determine if these were leverage points, as

we did for the C stock variables above, since the log-

transformation of this linear model is nonlinear, and
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Table 6

Most parsimonious model describing each stand structure variable, fitted to the restricted datasetsa [N = 36 for all variables except canopy base height (N = 12)]

Stand structure

(dependent)

variable

Best regression modelb Coefficients (standard error) wr
c r2 d S.E.e Distance

from best

modelf

Number of

competing

modelsg

Predictor variables

in competing

modelshb0 b1 b2

Total aboveground

biomass (Mg/ha)

b0 + b1CH + b2P1/G (2) (4) 90.62

(14.96)

9.33 (1.63) �185.0 (31.06) 0.11 58.1 0.14 0 6 CR2 (3), hmax95,90 (2),

h1 (1)

Foliage biomass (Mg/ha) b0 + b1PG/1 (4) 17.63

(1.83)

�16.64 (2.53) 0.04 54.5 0.14 0.6 3 HC (2), hmax, h25 (1)

Basal area (m2/ha) b0 + b1CH + b2P1/G (2) (6) 19.43

(2.51)

1.12 (0.27) �30.3 (5.27) 0.03 49.8 0.14 1.3 14 medCH, hmax90 (4),

RperP (3), rel-CRS2,

hmax95, PG/1 (2), h1,

rel-CRS1 (1)

Tree density (trees/ha) b0 + b1P1/G (2) 418.5

(50.41)

�482.7 (110.1) 0.25 34.9 0.26 1.1 3 PG/1 (2)

Canopy base height (m) b0 + b1h1m + b2SDh3
(2) 1.75

(2.06)

�0.54 (0.07) 1.70 (0.56) 0.37 76.2 0.33 0 3 h13 (1)

a We restricted the data to determine their effect on model parameters and ranking. We eliminated five leverage points for all four C stock variables (the same five for all response

variables). For canopy base height, we eliminated one high value, subjectively considered a potential outlier.
b Independent variables follow names in Table 3. In parentheses is the number of competing models these variables formed part of.
c Akaike weights (probability that the model would be selected as the best model from the same candidate set, given another dataset).
d Coefficient of determination of the regression (in natural log space).
e Standard error of estimates (in natural log space).
f Distance, in AICc units, that the most parsimonious model is from the model ranked as best.
g Competing models are defined as those within 3 AICc units of the best model (number does not include the selected model).
h Variables are ordered by the number of competing models they form part of, which is shown in parentheses.
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the software used does not provide diagnostics for

nonlinear models. The reanalysis described below

must therefore be considered tentative. The results of

refitting and reranking the models without the high

value supported the same best model (Table 6), and the

regression coefficients were within one standard error

of the original values. The models that resulted from

rerunning the analysis without both the large and the

small value had very low goodness of fit; the best

model explained 12.4% of the variability. The range of

predicted values was substantially smaller than that of

the observed (1.1 m versus 3.3 m).

We had estimates of canopy bulk density for all 14

sites measured in the summer of 2001. The best model

was a negative exponential function of the proportion

of ground returns that were not intercepted by the

canopy (PG/1; Table 4), which was the same as the best

models for the biomass structure variables. This model

explained 82.8% of the variability (Table 4), and there

were no identifiable leverage points in the data. The

Akaike weight for the best model was 0.56. The linear

function of this same predictor variable (PG/1) was not

a close competitor, though it was within 10 AICc units

of best model. A linear function of a biomass density

variable (d12; Table 3) was within 6 AICc units of the

best model.
4. Discussion

4.1. Predictors for C stock and fire behavior

modeling variables

The cumulative height metrics in the top models for

mean tree height were the lower fractions of returns

(�50%), and are therefore, dominated by reflection

from the upper canopy (i.e. the height of large trees).

Stands with greater variability in canopy surface

height are likely composed of large trees, mixed in

with gaps filled by smaller trees. The mean height of

these stands is likely lower than the cumulative height

metric would suggest, as the height of those smaller

trees needs to be incorporated. This explains the

selection of a model where mean height is positively

related to a cumulative height metric and negatively

related to variability in height.

The discrete lidar points provide information on the

integrated stand, and are therefore, dominated by the
large trees that form the surface of the canopy. The

values of Lorey’s height are dominated by the height

of large trees, and therefore, are more consistent with

the height information provided by the lidar data than

the mean height values. The goodness of fit of our

models for Lorey’s height was similar to those found

by Stoker (2002) for lidar-identified individual tree

heights (these probably represent clumps of trees

indistinguishable from each other with lidar data).

Lidar-derived heights explained 91% of the variability

in height of known individual trees (Stoker, 2002).

We used the mean height of cumulative fractions of

1st returns (hmaxi; Table 3) as predictor variables in an

effort to select those returns that characterize the

surface of the canopy. Our results for Lorey’s height

indicate that the tallest 25% of 1st returns (hmax25) are

a good approximation to this surface. We suggest that

these cumulative height metrics should be more robust

than percentile heights, such as those used in other

studies (Naesset, 2002; Naesset and Økland, 2002).

The fraction of returns that represent the canopy

surface should be a function of only canopy cover of

the dominant trees, while the percentile heights are a

function of the complete, three dimensional leaf area

index profile (Magnussen and Boudewyn, 1998).

Nonlinear functions of hmax25 and models with two

predictor variables were close competitors to the best

model for Lorey’s height. However, there are reasons

to support the use of the simple, linear model, even

given its model selection uncertainty. First, the high

model selection uncertainty is likely due to the large

number of candidate models we included in this

analysis. Second, lidar measures height directly

(Lefsky et al., 2002b), and other studies have found

strong linear relationships (r2 > 90%) between lidar

height metrics and stand height (Means et al., 1999,

2000; Holmgren et al., 2003).

Our capacity to predict canopy base height from

lidar metrics was limited. The fit of the original best

model was very good, but this seemed to be dominated

by two sites with extreme values. Given the

consistency of results with and without the large

value, and the lack of fit without both extremes, we

conclude that lidar has the potential to predict CBH in

areas where there is a wide range of observed values.

Naesset and Økland (2002) explained 71% of the

variability in mean crown height in a boreal forest,

where values had a range of 6.3 m. More work is
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needed to generate useful models to predict this

variable using lidar, as it is unclear why the best model

selected in this study should describe CBH as

proportional to the variability in stand height and

inversely proportional to that height.

Some lidar studies have found nonlinear relation-

ships between lidar metrics and aboveground biomass

(Lefsky et al., 1999b, 2002a; Naesset, 2002) and basal

area (Naesset, 2002). These were generally masked by

the use of log-transformed equations, the use of

squared or cubic values of the lidar metrics as

predictor variables, and the presentation of plots of

observed versus predicted, rather than field values

versus lidar metric values. Our initial results seemed to

support this: a nonlinear regression was the best model

for all four biomass structure variables and canopy

bulk density (Table 4). The predictor variable (PG/1) is

inversely related to canopy closure (Table 3). It is

possible that in these forests with relatively low

biomass density (Peet, 2000), the correlation between

cover and biomass characteristics is stronger than in

high biomass systems, where most lidar studies have

been developed (Lefsky et al., 1999b; Means et al.,

1999; Drake et al., 2002). This might explain the

selection of this predictor variable.

However, there are factors that suggest that the

selection of a nonlinear model to describe biomass

structure could simply be an artifact of our sample. First,

our field data were clumped at the lower end of the range

of biomass structure and density values. Second, other

studies have found increasing variability in the

predictions of biomass from lidar metrics as biomass

levels increase (Lefsky et al., 1999a,b; Drake et al.,

2002). Third, the sites with greatest biomass values were

the four sites with highest tree density. We estimated

biomass from a sample of trees at these sites (see Section

2). At high density sites, this sample was a small

proportion of the total tree population (three sites had

less than 5% sample). Deviations between sample mean

tree biomass and the true mean tree biomass were also

inflated in these high density sites by the way we

calculated per hectare biomass values. These factors,

combined with outlier and leverage diagnostics, led us

to refit and rerank the models without the four largest

values plus one other leverage point, to test the

sensitivity of the relationships to these sites (Table 6).

The possibility that the error in four of these values is

large led us to consider this a necessary step in arriving at
our conclusions. This restriction of the domain tends to

increase the fit of linear models. We have presented

the most parsimonious models, based on the informa-

tion provided by the information–theoretic approach

(Table 6).

All the top models for total aboveground biomass

are linear functions. Theoretically, the combination of

a height metric with a cover metric provides the three-

dimensional information needed to estimate biomass

without saturation of the relationship at high biomass

values. This supports the use of lidar to obtain

nonsaturating relationships to estimate total biomass,

though the values represented in this restricted dataset

are within the range that can be estimated using optical

sensors (<150 Mg/ha; Waring et al., 1995).

Our capacity to estimate basal area with lidar data

is due to the correlation between basal area and total

amount of reflecting surfaces in the stand (i.e. total

biomass), rather than a direct measurement. Eight of

the top models for basal area included an interaction

term. The difficulty in clearly interpreting these

models, combined with the similarity of some of the

close competitors to the models selected for total

aboveground biomass, led us to conclude that the most

practical model to predict basal area in this system is a

linear function of a height metric and a cover-related

metric (Table 6). The selection of this model

simplified the subset of potentially useful lidar

metrics. The variability left unexplained by these

models is likely also due to sampling error, given the

methodology we used to estimate basal area.

The best model for tree density, selected with the

restricted dataset, was still a nonlinear function of a

metric inversely related to canopy cover (Table 6).

These estimates were the least robust (Table 5). This

could be due to errors in its estimation on the ground,

particularly if trees are not randomly distributed, as

assumed by the point-centered quarter method. It is

possible to combine tree density and individual tree

sizes in a variety of ways resulting in similar amounts of

reflecting surfaces, which would also make it difficult to

consistently predict density from lidar metrics. Naesset

and Bjerknes (2001) found similar low fit for their

regression model for density of young Norway spruce

and Scots pine plantations. A close competitor to the

best model (based on the restricted dataset) that had

similar support and goodness of fit (r2 and standard

errors) was a linear function of the same lidar metric. We
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Table 7

Lidar metrics that were useful predictors of stand structure variables

Stand structure

variable represented

Useful predictors

(lidar-based metricsa)

Mean height hmax50, hmax95, hmax90,

hmax25, hmax10, SDh3
, rangeh3

Lorey’s height hmax25, SDh3
, rangeh

Total aboveground

biomass

hmax95, hmax90, CH, h1,

PG/1, P1/G

Foliage biomass PG/1, HC

Basal area hmax90, hmax95, CH, h1,

PG/1, P1/G

Tree density PG/1, P1/G

Canopy bulk density PG/1

Canopy base height h1m, h13, SDh3
, rangeh3

a Names of lidar metrics described in Table 3.
therefore consider that there is potential for obtaining

linear relationships to estimate tree density using

discrete-return lidar. More work needs to be done in

this area, since the indirectness of the relationship

between the information gathered by the sensor and tree

density might determine that relationships are consistent

only over a very limited range of conditions.

Two of the top four models for foliage biomass

were linear functions of the canopy cover metric in the

original best model, combined with a height metric

and the height to the base of the canopy metric. In

both cases the confidence limits of the coefficient

for the height metric straddled zero. A posteriori, we

fit a linear regression based solely on the metrics

related to cover and canopy base height (r2 = 58.7%;

S.E. = 0.13). Its capacity to explain the variability in

foliage biomass is a strong indicator of its potential for

prediction, and should be considered in further studies

of this kind. The linear function of the canopy cover

metric in the original best model has a similar

goodness of fit (Table 6), proving the most parsimo-

nious a priori model. These results support the use of

linear models to estimate foliage biomass from

discrete-return lidar.

Canopy bulk density, critical for fire behavior

modeling (Scott and Reinhardt, 2001), is related to

foliage biomass and canopy volume. Our dataset is

likely too small to provide parsimonious model

selection (Burnham and Anderson, 2002). Though the

best model was nonlinear, linear functions of the cover

related metric (PG/1) and a biomass density metric (d12)

had slight support. We suggest that further studies aimed

at estimating canopy bulk density will prove discrete-

return lidar’s capacity to estimate this variable with

models that do not saturate at high values.

This exploratory analysis has allowed us to present

regression models that explain a substantial portion of

the variability in the stand structural variables we were

interested in. We have also selected a subset of the 39

lidar metrics analyzed. Based on the best selected

models, the position of confidence intervals of para-

meters relative to zero, the need to avoid overfitting

the data and the capacity of metrics to predict a variety

of structural variables, we have selected a subset of 14

lidar metrics (Table 7). We recommend that further

studies concentrate on these metrics as useful pre-

dictors of stand structural variables in ponderosa pine

forests.
5. Conclusions

This study confirmed discrete-return lidar’s capacity

to measure stand height, and identified the fraction of the

tallest 1st returns that directly relate to Lorey’s height in

these ponderosa pine forests. The selected linear models

offer useful estimates of total aboveground biomass,

basal area and foliage biomass. The models selected for

tree density provide an initial estimate, though the lack of

a direct relationship between characteristics measured

by lidar sensors and this variable makes more research in

this area necessary. Using lidar to predict canopy base

height and canopy bulk density is still an unresolved

issue. Our results suggest that there is potential, and

studies with a greater number of samples, evenly

stratified across the complete range of values found in

these forests will hopefully identify the necessary

predictor variables and functional relationships.

We identified a subset of lidar metrics that should

be considered in future studies. The use of an

information–theoretic approach to model selection

provided us with a wealth of information on model and

variable ranking. We consider this approach particu-

larly useful, and its application to this study gives us

confidence that the selected lidar metrics have

potential as predictors of stand structure.

In a broader context, our results are consistent with

other studies using lidar. We agree that lidar can provide

estimates of forest biomass based on nonsaturating

relationships, though we highlight the need to carefully

interpret the results presented to support it. Our results

also provide some insight into the importance of
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Table A.1

Symbols used in equations for lidar metrics, described in

Appendix A

Symbol Definition

A Area of the sampled site

M Number of vegetation returns

in a site with height >3 m

N Total number of vegetation returns in a site

v Number of vegetation returns within pulse i

T Total number of returns

(vegetation + ground) in a site

t Total number of returns (vegetation or ground)

within pulse i

Ii Intensity (in raw counts) of return i

Iij Intensity of vegetation return j of pulse i

Iik Intensity of return k (vegetation or ground) of pulse i

zi Height above the ground of return i (ground returns

have z = 0)

Bi Sum of the standardized intensities of all returns

classified as vegetation within height bin i.

We standardized the intensities of all returns

from one pulse, expressing the intensity of
carrying out lidar studies in a variety of ecosystems, and

of broadening the focus of future studies to include low

biomass forests, where the best lidar metrics may not be

the same as in high density forests. Low biomass

systems have been mostly neglected, as lidar studies

have focused on accurately estimating high levels of

biomass (Lefsky et al., 1999a; Drake et al., 2002), or on

commercial forestry inventories (Naesset, 2002). We

have addressed this issue, and our results support the

need for more studies in low density systems.

The number of extreme fires in forests in the western

United States highlights the need to increase our

understanding of the effect of stand structure and its

spatial arrangement on fire behavior. Spatially explicit

estimates of tree density, canopy base height and canopy

bulk density are required to focus efforts of forest

restoration and fuels mitigation treatments. We hope

that this will provide the necessary motivation for these

studies to be carried out.

each return as the proportion of the total

intensity returned for that particular pulse

hi Height above the ground of the midpoint of

height bin i. We used 0.5 m height bins

max h Total number of height bins, 0.5 m tall,

in the site

CR1i Proportion of energy from pulse i returned

by the canopy (i.e. in all vegetation returns)

CR2i Proportion of energy from pulse i returned by

the canopy, corrected for variations in reflectance

P Total number of pulses within a site

r Reflectance factor: r = 1 for vegetation returns,

r = 2 for ground returns
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Appendix A. Description and calculation of

complex lidar metrics (see Table 3)

CRS: canopy reflection sum. Rationale: this metric

is analogous to variable by the same name defined by

Means et al. (1999).

CRS ¼

XN

i¼1

Ii

A

(for all symbol descriptions, see Table A.1).

rel-CRS1: relative canopy reflection sum. Rationale:

expressing CRS relative to the intensity of returns

from the canopy and the ground should incorporate the
effect of variations in canopy cover.

rel-CRS1 ¼

XN

i¼1

Ii

XT

i¼1

Ii

� 1

A

rel-CRS2: corrected relative canopy sum. Rationale:

assuming the ground is covered in litter, the reflectance

at 1064 nm of the ground is approximately half the

reflectance of the green canopy (sensu Lefsky et al.,

1999b).

rel-CRS2 ¼

XN

i¼1

Ii

XT

i¼1

Ii � rð Þ
� 1

A
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wCRS: the weighted canopy reflection sum. Ratio-

nale: number and size of trees taper off high in the

canopy (i.e. less biomass). In the center of a crown one

return may be representative of the area around it, this

is less likely at higher points in the canopy. This metric

weighs the intensity of each return by the inverse of

the height of that return. This will weigh returns closer

to the ground more heavily, potentially correcting for

the attenuation of incoming radiation close to the

ground. We limited the vegetation returns to those

above 3 m, to avoid over-weighing returns from

understory vegetation. It is necessary to divide the

weighted sum by the area of the sample site to make

this metric comparable across sites of variable area.

wCRS ¼
XM

i¼1

Ii �
1

zi

� �" #
� 1

A

QMCH: quadratic mean canopy height. Rationale:

this metric is analogous to the variable by the same

name defined by Lefsky et al. (1999b), modified to

apply to discrete return lidar data. This metric is based

on the standardized intensity of returns with heights

>3 m. It is necessary to divide the weighted sum by

the area of the sample site to make this metric com-

parable across sites of variable area.

QMCH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXmaxh

i¼1

Bi � h2
i

vuut
2
4

3
5� 1

A

Table B.1

Symbols used in equations of candidate models for each stand

structure variable, described in Appendix B

Symbol Metric representative of

hx Tree or canopy heights

havg Mean tree or canopy heights

hmed Median canopy heights

varx Variability in canopy height

coverx Canopy cover

Bx Biomass density

HCx Crown height

b0, b1, b2, b3, c Regression coefficients
CR1: proportion of energy returned by the canopy.

Rationale: analogous to the inverse of the ground

return ratio defined by Drake et al. (2002), modified

for discrete return lidar.

for pulse i; CR1i ¼

Xv

j¼1

Iij

Xt

k¼1

Iik

;

for the site; CR1 ¼

XP

i¼1

CR1i

P

CR2: proportion of energy returned by the canopy,

corrected for variations in reflectance (sensu Lefsky

et al., 1999b).

for pulse i; CR2i ¼

Xv

j¼1

Iij

Xt

k¼1

Iik � r

;

for the site; CR2 ¼

XP

i¼1

CR2i

P

Appendix B. Candidate regression models for

each stand structural variable

Mean height and Lorey’s height (h):
h = b0 + b1hx
 (18)
h = b0 + b1hx + b2varx
 (18 � 4)
h = b0 + b1hx + b2varx + b3hxvarx

(only absolute variability metrics)
(18 � 2)
For symbols used in equations see Table B.1.

Variability in tree heights could determine that

measures of canopy surface height are not represen-

tative of the stand height. The compensating effect due

to variability can be additive or multiplicative.
h = b0 + b1havg + b2hmed
 (9)
h = b0 + b1havg + b2hmed + b3hmedhavg
 (9)
When tree height distributions are not normal, the

difference between mean and median heights could
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describe stand height better than only the mean. This

effect can be additive or multiplicative.
h = b1hc
x
 (18)
h = b0 + b1hc
x
 (18)
Canopy base height (CBH):
CBH = b0 + b1HCx
 (1)
CBH = b0 + b1HCc
x
 (1)
CBH = b1HCc
x
 (1)
CBH = b0 + b1HCx + b2varx
 (4)
CBH = b0 + b1HCx + b2varx + b1HCxvarx
 (4)
Variability in tree heights may be related to

variability in crown heights. Therefore, combining a

measure of variability in height with the metric

representing crown base height could better predict

canopy base height. This effect can be additive or

multiplicative.
CBH = b0 + b1hx + b2HCx
 (18)
CBH = b0 + b1hx + b2HCx + b3hxHCx
 (18)
Since the lidar does not distinguish foliage from

other biomass components, the representativeness of

the lidar metric for crown base height might be

dependent on stand height or age, described by a

canopy height metric. This effect can be additive or

multiplicative.
CBH = b0 + b1hx
 (18)
CBH = b0 + b1hc
x (0 � c � 1; c > 1)
 (18 � 2)
CBH = b1hc
x (0 � c � 1; c > 1)
 (18 � 2)
As tree heights increase, so should height to crown,

due to shading and dying of lower branches. The

increase in these two measures might be proportional

or not.
CBH = b0 + b1hx + b2varx
 (18 � 4)
CBH = b0 + b1hx + b2varx + b3hxvarx

(only absolute variability metrics)
(18 � 2)
The proportionality in the relationship between tree

heights and crown heights might vary at the stand level

if the individual tree heights are more or less variable.
Total aboveground biomass (TAB):
TAB = b0 + b1Bx
 (11)
TAB = b0 + b1Bc
x
 (11)
TAB = b1Bc
x
 (11)
TAB = b0 + b1coverx
 (5)
TAB = b0 + b1coverc
x
 (5)
TAB = b1coverc
x
 (5)
Tree biomass in low density forests could be well

represented by canopy cover, linearly or nonlinearly.
TAB = b0 + b1hc
x (0 � c � 1; c > 1)
 (18 � 2)
TAB = b1hc
x (0 � c � 1; c > 1)
 (18 � 2)
Tree allometries indicate that tree biomass is

related to tree height. As height is one-dimensional

and biomass is three-dimensional, this relationship is

likely to be nonlinear.
TAB = b0 + b1hx + b2HCx
 (18 � 1)
TAB = b0 + b1hx + b2HCx + b3hxHCx
 (18 � 1)
The crown makes up an important part of the tree

biomass. So the relationship between height and

biomass might be more precise if we include

information on how much of that height is part of

the crown. This effect can be additive or multi-

plicative.
TAB = b0 + b1hx + b2coverx + b3coverxhx
 (18 � 5)
TAB = b0 + b1hx + b2coverx
 (18 � 5)
Stand height and stand cover represent the three

dimensions over which the biomass is distributed, so

representing these two measures in a model could be

used to describe stand biomass.
TAB = b0 + b1hx + b2varx
 (18 � 4)
TAB = b0 + b1hx + b2varx + b3hxvarx

(only absolute variability metrics)
(18 � 2)
The greater the variability in heights in a stand, the

more likely there are to be gaps in the canopy. These

gaps may loosen the correlation between height and

biomass, and this difference can be accounted for by a
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measure of variability. This effect can be additive or

multiplicative.

Foliage biomass (FB) and canopy bulk density

(CBD): All the same regression models as for TAB,

plus:
FB/CBD = b0 + b1hx + b2coverx + b3HCx
 (18 � 5)
The amount of foliage biomass should relate to

crown height rather than tree height. Including a

measure of height to crown will account for the

difference.

Basal area (BA):
BA = b0 + b1Bx (without d3)
 (10)
BA = b0 + b1Bc
x (without d3)
 (10)
BA = b1Bc
x (without d3)
 (10)
BA = b0 + b1coverx
 (5)
BA = b0 + b1coverc
x
 (5)
BA = b1coverc
x
 (5)
BA = b0 + b1hx
 (18)
BA = b0 + b1hc
x
 (18)
BA = b1hc
x
 (18)
Stand basal area relates to tree size (diameter and

height) and tree density. These measures are also

determinants of tree biomass and canopy cover.

Therefore, biomass density, cover and height metrics

should correlate with basal area.
BA = b0 + b1hx + b2Bx (without d3)
 (18 � 10)
BA = b0 + b1hx + b2Bx + b3hxBx
 (18 � 10)
If biomass is distributed over a large stand height,

basal area may be smaller than expected based on

stand biomass. Combining a height and a biomass

density metric could therefore predict basal area more

accurately than either on its own. This effect can be

additive or multiplicative.
BA = b0 + b1hx + b2coverx + b3hxcoverx
 (18 � 5)
BA = b0 + b1hx + b2coverx
 (18 � 5)
Canopy cover has an absolute maximum. Once this

is reached, increases in height should correlate with
increases in basal area that cannot be explained by

canopy cover.

Tree density (d):

d = b0 + b1coverx

(b1 > 0 and b1 � 0 for d11)
(5 + 1)
d = b0 + b1coverc
x

(b1 > 0 and b1 � 0 for d11)
(5 + 1)
d = b1coverc
x

(b1 > 0 and b1 � 0 for d11)
(5 + 1)
The greater the number of trees, the greater the

canopy cover. This relationship could be linear or

nonlinear.
d = b0 + b1varx (b1 > 0 and b1 � 0)
 (4 � 2)
d = b0 + b1varc
x
 (4)
d = b1varc
x
 (4)
Greater tree densities will favor competition. This

could generate variability in individual tree growth,

and therefore, variability in stand height.
d = b0 + b1hc
x
 (18)
d = b1hc
x
 (18)
The older a stand, the greater the tree heights. Stand

age should also correlate with variations in stand

density. The correlation of both with stand age

explains why stand height might be used to predict

stand density.
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Fulé, P.Z., Waltz, A.E.M., Covington, W.W., Heinlein, T.A., 2001.

Measuring forest restoration effectiveness in reducing hazardous

fuels. J. Forestry 99, 24–29.

Gholz, H.L., Grier, C.C., Campbell, A.G., Brown, A.T., 1979.

Equations for estimating biomass and leaf area of plants in

the Pacific Northwest. Forest Research Lab, School of Forestry,

Oregon State University. Research Paper 41.

Hershey, K.T., Meslow, E.C., Ramsey, F.L., 1998. Characteristics of

forests at spotted owl nest sites in the Pacific Northwest. J. Wildl.

Manage. 62, 1398–1410.

Holmgren, J., Nilsson, M., Olsson, H., 2003. Estimation of tree

height and stem volume on plots using airborne laser scanning.

Forest Sci. 49, 419–428.
Houghton, R.A., Hackler, J.L., Lawrence, K.T., 2000. Changes in

terrestrial carbon storage in the United States. 2. The role of fire

and fire management. Global Ecol. Biogeogr. 9, 145–170.

Hughes, R.F., Kauffman, J.B., Cummungs, D.L., 2000. Fire in the

Brazilian Amazon. 3. Dynamics of biomass, C, and nutrient

pools in regenerating forests. Oecologia 124, 574–588.

Husch, B., Beers, T.W., Kershaw Jr., J.A., 2003. Forest Mensuration.

John Wiley and Sons Inc. Hoboken, New Jersey, USA.

Kaufmann, M.R., Regan, C.M., Brown, P.M., 2000. Heterogeneity

in ponderosa pine/Douglas fir forests: age and size structure in

unlogged and logged landscapes of central Colorado. Can. J.

Forest Res. 30, 698–711.

Keane, R.E., Arno, S.F., Brown, J.K., 1990. Simulating cumulative

fire effects in ponderosa pine/Douglas-fir forests. Ecology 71,

189–203.

Lefsky, M.A., Cohen, W.B., Acker, S.A., Parker, G.G., Spies, T.A.,

Harding, D., 1999a. Lidar remote sensing of the canopy structure

and biophysical properties of Douglas-fir western hemlock

forests. Rem. Sens. Environ. 70, 339–361.

Lefsky, M.A., Cohen, W.B., Harding, D.J., Parker, G.P., Acker, S.A.,

Gower, S.T., 2002a. Lidar remote sensing of above-

ground biomass in three biomes. Global Ecol. Biogeogr. 11,

393–399.

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002b.

Lidar remote sensing for ecosystem studies. BioScience 52, 19–

30.

Lefsky, M.A., Cohen, W.B., Spies, T.A., 2001. An evaluation of

alternate remote sensing products for forest inventory, monitor-

ing, and mapping of Douglas fir forests in western Oregon. Can.

J. Forest Res. 31, 78–87.

Lefsky, M.A., Harding, D., Cohen, W.B., Parker, G., Shugart, H.H.,

1999b. Surface lidar remote sensing of basal area and biomass in

deciduous forests of eastern Maryland, USA. Rem. Sens.

Environ. 67, 83–98.

Lindgren, B.W., 1993. Statistical Theory. Chapman and Hall, New

York, USA.

Magnussen, S., Boudewyn, P., 1998. Derivations of stand heights

from airborne laser scanner data with canopy-based quantile

estimators. Can. J. Forest Res. 28, 1016–1031.

Means, J.E., Acker, S.A., Fitt, B.J., Renslow, M., Emerson, L.,

Hendrix, C.J., 2000. Predicting forest stand characteristics with

airborne scanning lidar. Photogramm. Eng. Rem. Sens. 66,

1367–1371.

Means, J.E., Acker, S.A., Harding, D.J., Blair, J.B., Lefsky, M.A.,

Cohen, W.B., Harmon, M.E., McKee, W.A., 1999. Use of large-

footprint scanning airborne lidar to estimate forest stand char-

acteristics in the Western Cascades of Oregon. Rem. Sens.

Environ. 67, 298–308.

Moore, M.M., Covington, W.W., Fulé, P.Z., 1999. Reference con-
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